

The Importance of MSW in the Hydrogen Economy

Samuel Tam, C Ma, T McClawley, S Ng, H Ni, J She & C Tam EnerWaste Asia Pacific Ltd. The 2nd Conference on Hydrogen Economy 28th October 2021 Hong Kong PRC

Outline

- Introduction EnerWaste Asian Pacific Limited
- Pathways to Clean Hydrogen
- Current Status & Obstacles
- U.S. Approaches to Clean Hydrogen Production
- Wastes to Hydrogen
- Potential Impacts

Urban Gateway is a private equity group that leverages *de-risked* and *disruptive* urbantech from global SMEs and *commercializes* them

through four climate-action driven companies

Energy Intensity Reduction

focus on commercial and industrial cooling sector

Electric Market Reform focus on virtual power, highest disruptive potential

Alternative Energy

focus on transforming waste to highest value-added sustainable products — hydrogen & biofuels

EnerCool

Asia Pacific Limited

EnerCloud

Asia Pacific Limited

EnerWaste

Asia Pacific Limited

Low Carbon Development

focus on technologies that enable cost effective low carbon real estate development

EnerProp Asia Pacific Limited

EnerWaste Asia Pacific Limited

reimagining waste for climate impact

focus on *low carbon* technologies
converting waste to *fuels, energy and materials*enabling *zero waste* urban center development

First partnership with **Omni** Conversion Technologies Inc. **ZERO** emissions, carbon **NEGATIVE**, cost **COMPETITIVE** and **PATENTED** technology

Pathways to Clean Hydrogen

- Hydrogen is a dynamic fuel
- Electrolysis (water)
- Thermal conversion (fossil & biomass) with CCUS
- Wastes coupled with biomass

Comparison of Commercial, State-of-the-Art, Fossil-Based Hydrogen Production Technologies (Pending Peer Review)

- Lowest reforming cases SMR w/o CCS (\$1.06/kg H₂)
- Highest reforming case SMR w/ CCS (\$1.64/kg H₂)
- Lowest gasification case coal w/o CCS (\$2.46/kg H₂)
- Highest gasification case "net-zero" coal/biomass (\$3.64/kg H₂)

Global Warming Impact Factors (100-yr, with climate feedback)

- U.S. Electricity, 2016 National Average Profile¹: 590 kg CO₂e/MWh
- Production and Delivery, Cradle-to-city gate²: 0.99 kg CO₂e/kg NG
- Bituminous, Transport Distance (MRO Average)³: 0.19 kg CO₂e/kg of coal
- Torrefied, non-pelletized SRWC⁴: -0.72 kg CO₂e/kg AR biomass
- CO₂ Management, saline aquifer⁵: 0.02 kg CO₂e/kg CO₂ sequestered

血

EnerWaste

US DOE Hydrogen Program Goal

Sunita Satyapal, US DOE Hydrogen Shot Summit, August 31, 2021

SunShot Program Lesson Learnt

Arun Majumdar, Stanford University, US DOE Hydrogen Shot Summit, August 31, 2021

8

Electrolysis Pathway

Sunita Satyapal, US DOE Hydrogen Shot Summit, August 31, 2021

Example: H₂ Cost from PEM Electrolysis

Pathways to meet Goal

- Reduce electricity cost and improve efficiency and utilization
- Reduce capital cost >80%
- Reduce operating & maintenance cost >90%

*2020 Baseline: PEM (Polymer Electrolyte Membrane) low volume capital cost ~\$1,500/kW, electricity at \$50/MWh. Pathways to targets include capital cost < \$300/kW by 2025, < \$150/kW by 2030 (at scale). Assumes \$50/MWh in 2020, \$30/MWh in 2025, \$20/MWh in 2030

Thermal Conversion of Waste Pathway

Sunita Satyapal, US DOE Hydrogen Shot Summit, August 31, 2021

Capital Fuel \$2.00 Fixed Variable \$1.50 CO2 T&S \$1.00 \$0.50 \$0.00 2020 Waste 2030 Waste

Conversion w/CCS Conversion w/ CCS * Waste coal, plastics, biomass residuals, municipal solid waste (MSW), and biogas

Examples of RD&D

- Includes reforming, pyrolysis, and other pathways with focus on low life cycle emissions
- Process intensification and optimization
- Improvements in air separation, catalysts, carbon capture, and upstream emissions

Example: H₂ Cost from Waste Conversion + CCS

OMNI CT Gasification & Plasma Refining System (GPRSTM)

Any combination of materials

Recyclable glass, metal and large inert objects removed

 \bigcirc

Shredded to 10cm

MSW to Hydrogen Production & CO₂ Capture

Minimal Waste Preparation, High Fuel Flexibility

OMNI200[™] GPRS[™]

Fluidized Bed Gasifier

Minimally prepared "black bag" waste on GPRS[™] input conveyor in Ottawa

No sorting, one stage of shredding to 100mm-, one magnet, no rejects

Waste Preparation for typical Fluidized Bed Gasifier

Sorting, shredding, removal of all metals and hard particles, drying, sizing

OMNI200[™] GPRS[™] Unlike Other Gasifiers

- Type of energetic Feedstock does not matter Omnivorous
- No Ash requiring disposal all particulate is vitrified into *Omni*Rock[™]
- No Dioxin and Furan formation no need to remove difficult wastes with high plastics and other sources of halogens
- Gasification of Feedstock done by excess heat:
 - Plasma only used to refine Syngas
 - Reduced electrical demand
- Plasma not used directly on waste Plasma used to crack tars in raw Syngas
- Moving grate gasifier + Updraft gasifier Vs. Others' Fluidized bed gasifier
- Only Gasification process designed to create valuable Syngas for Biofuels:
 - Syngas cleaned & conditioned in OMNI CT gas cleaning system to create *Omni*Syngas™
 - No emissions to atmosphere in waste conversion to *Omni*Syngas™
- **OmniSyngas™** can be tailored for downstream conversion into Biofuel, Hydrogen, aviation fuel

Thermal Conversion Products from Waste-Derived Syngas

间 EnerWaste

Generalized Syngas Reaction Scheme

Potential Impacts

From Hydrogen Council Roadmap Study: By 2050

- \$2.5 trillion in global revenues
- 30 million jobs
- 400 million cars, 15-20 million trucks
- 18% of total global energy demand

The hydrogen ecosystems will appear around clusters of largescale users, such as sea-ports, refineries, fertilizers, steel, and power

Thank You!

Contact Information: Samson Ng, CEO EnerWaste Asia Pacific Limited Unit B, 36/F, E-Trade Plaza 24 Lee Chung Street, Hong Kong Samson.ng@Urban-Gateway.com